If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25t-5t^2+30=0
a = -5; b = 25; c = +30;
Δ = b2-4ac
Δ = 252-4·(-5)·30
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-35}{2*-5}=\frac{-60}{-10} =+6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+35}{2*-5}=\frac{10}{-10} =-1 $
| 111-x=186 | | 8(p−88)=64 | | 98=7x,x=14 | | -2(4x-1)-3x+5=-5 | | 72=9x8 | | 52/14=x/13 | | 3d-6=30 | | 4x+6=-3x+1 | | 19=x-52 | | 2(7x+4(=18 | | 52/14=13/x | | w/3−2=6 | | w/0.16=6.25 | | M=3;b=-6 | | u/9+75=79 | | u/9+ 75=79 | | -6×=4+2y | | -4p-8=3p+ | | 36/26=16/x | | 2x+21=x-21 | | 7x-4+53=180 | | 2x+21=x-22 | | –7u=–2u+10 | | 8b+17=17 | | 98u=-16u^2-12 | | 7x-4+37=180 | | u/3+ 10=14 | | 7*b=147 | | 7y+3y=42 | | -200v=-16v^2-96 | | 4/10=n/30= | | 7b=147 |